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SUMMARY 

When the Galerkin finite-element method with a nine-node isoparametric Lagrangian element is applied 
to solve non-Newtonian fluid flow problems, a considerable amount of computing time is required to solve 
the discretized non-linear system of equations by Newton's method. A method proposed by Broyden has 
been modified to compute the Jacobian matrix associated with Newton's method. This modified Broyden's 
method can be combined with the frontal method to efficiently solve the linearized finite-element equations 
during the iteration. Numerical results of a sample problem concerning the determination of the pressure- 
drop/flow-rate relationship for power-law fluids in rectangular ducts show that the application of this new 
method can reduce computing time substantially. 
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INTRODUCTION 

The Galerkin finite-element method has been applied extensively for solving non-Newtonian fluid 
flow problems in recent years. Various types of elements have been used; simple triangular elements 
were preferred by several  researcher^,'-^ whereas others used eight-node serendipity elements5 
or nine-node Lagrangian  element^,^,^ to name just a few. It was reporteds that the nine-node 
Lagrangian element generates more accurate finite-element solutions of the Navier-Stokes 
equations than several other types of elements. A similar conclusion was reached for non- 
Newtonian fluid flow  problem^.^ 

Newton's method is a commonly used iterative scheme for the non-linear system of equations 
resulting from the finite-element discretization of non-Newtonian fluid flow problems. However, 
when the nine-node Lagrangian element is used, owing to the complexity of the constitutive 
equations of the non-Newtonian fluid models and the nature of the element, many numerical 
integrations are required in the evaluation of the Jacobian matrix during the iteration and, 
consequently, a considerable amount of computing time will be consumed. 

Engelman et aL9 examined various quasi-Newton methods for finite-element solutions of 
Newtonian flow problems and concluded that a method proposed by Bryoden" could be 
effectively used to save computer time. Engelman" later extended the analysis to non-Newtonian 
flow problems. Whereas the previous authors used a skyline solution approach, we found that 
Bryoden's method can be modified and then combined with the frontal method for non-Newtonian 
problems. This new approach can bypass the numerical integrations required for the updating 
of the Jacobian matrix, thereby saving computer time. 
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A sample problem will illustrate this approach. Comparisons of the numerical results and the 
CPU time required by the regular Newton's method with those of the new approach show that 
the new approach can reduce the computing time substantially. 

The sample problem is the determination of the pressure-drop/flow-rate relationship for fully 
developed laminar flow of power-law fluids in rectangular ducts. This problem was previously 
solved by Wheeler and Wisslerl using the finite-difference method and by  other^^.",'^ using 
the Galerkin finite-element method. The numerical solutions obtained here will be compared 
with the values given by Wheeler and Wissler. 

FLOW MODEL OF THE SAMPLE PROBLEM 

Consider the fully developed laminar flow of inelastic power-law fluids in a rectangular duct as 
shown in Figure 1. The flow is assumed to be unidirectional, and the equation of motion has 
the following f ~ r m : ~ ~ , ' ~  

where 
2 n-112 

i = . [ ( ~ ) 2 + ( ~ )  ] , 

and IC, n are material constants. The no-slip boundary condition requires 

w = O .  on dD. (3) 

Y 

Figure 1. Flow geometry 
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The dimensionless variables are defined as 

_ -  x =I 2/h,  y =I j / (Sh) ,  w = 

Introducing (4) into (l), we obtain 

where 

93 1 

(4) 

(5 )  

with boundary condition 

w=O, on dD. (7) 
Note that our non-dimensionalization is different from that of References 5 and 11; the pressure 

gradient does not appear explicitly in (5)-(7). 
The volumetric flow rate Q is defined as 

Substituting (4) into (8), we obtain 

where the shape factor A(n) is given as 

d(n) = jD jwdxd y .  

Equation (9) expresses the pressure-drop/flow-rate relationship for power-law fluids in rectangular 
ducts. The Galerkin finite-element method is applied to solve (5)-(7) for w. After w is determined, 
a numerical integration is performed to obtain d(n). The values of d(n) obtained will be compared 
with those given by Wheeler and Wissler. 

FINITE-ELEMENT SOLUTION 

Because the nine-node isoparametric element is used, w, x and y can be approximated in each 
element as 

where the interpolation function 6 can be found in several textbooks. 14-16 
Applying the Galerkin process to (9, we obtain, after performing an integration by parts, 

f,(w) = KmiWi - A ,  = 0, m, i = 1,2,. . . ,9, (12) 
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r r  

and 

e is the area of the element. Define 

WT = [w,, w2,. . . , WJ. 

J ” ( W ” + ~  - w”) = - F(w”), 

(17) 

(18) 

Applying Newton’s method to (16), we have 

where v stands for the number of the iteration. The elements of the Jacobian matrix J are defined as 
follows: 

and 

where 

(J)mj= - , m, j=1 ,2  ,..., 9,  (it) 

To solve the linear system of equations (18) efficiently, we can apply the frontal method. The 
frontal method was first developed by IronsL7 for symmetric coefficient matrices and later extended 
by HoodL8 for unsymmetric coefficient matrices for the solution of the linear system of equations 
arising in the finite-element method. 

This method can be considered as carrying out the Gaussian elimination in a discrete manner. 
The method starts by loading each of the element stiffness matrices to a working matrix 
consecutively until the number of the fully summed unknowns exceeds a preset value, then the 
Gaussian elimination will proceed. The eliminated coefficients will be stored for back substitution. 
The elimination process will stop when the number of the fully summed unknowns falls below the 
preset value, and the loading will resume. The process will repeat until all the coefficients have 
been eliminated and the solution is obtained by a back-substitution procedure. 

The stiffness matrix of the element corresponds to J in (18) for this flow problem. To evaluate 
the elements of J, we need to perform the integrations in (20). The integrations can be transformed 
to a local co-ordinate system, and a 3 x 3 Gaussian quadrature is used to approximate the 
integrations. Owing to the complexity of(20), which results from the non-linear fluid model and the 
use of the Lagrangian element, many numerical integrations are necessary for the construction of J. 
Therefore, a considerable amount of computer time will be consumed. 
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BROYDENS METHOD 

Broyden proposed a class of methods that are modifications to Newton's method designed to 
reduce the computing time in the evaluation of the Jacobian matrix. The method we chose to 
use is explained briefly here. 

Consider a set of non-linear algebraic equations 

fj(i,, i,, . . . ,aN)  = 0, j = 1,2,. . . , N ,  (22) 
or 

P(X) = 0. 

Suppose ftv is the vth approximation to the solution of (23), and Pv is written for P(sv) ,  then 
Newton's method is defined by 

(24) g v + 1  ~ X v - ( ~ v ) - l ] E v ,  

where 3' is the Jacobian matrix [ a f i / a i i ]  evaluated at Xv. Broyden's method proceeds as follows: 

1. Select an initial estimate solution Xo and an initial Jacobian matrix 3'. 
2. Compute Po = E(Xo). 
3 .  Solve for X', where X' = 8' - (3O)-'P0. 
4. Compute P'. Test P1 for convergence, if not, then 
5. Compute q = X'  - S o ,  P = El - Po. 

(P - [Pq)q' 
GTii 6. Compute 3' = 3' + 9 

where [ is an acceleration parameter. For convenience, we take [ = 1. 

3' by 3', and repeat from (2). 7. Replace R o  by 

We found that this method, like the frontal method, can also be carried out in a discrete manner. 
A simple proof is given in the Appendix. Therefore, this method can be combined with the frontal 
method to bypass the large number of numerical integrations in (20). 

However, when we update 3' with Broyden's method, the sparseness of the Jacobian matrix 
is destroyed. From step (6) above, we observe that after applying Broyden's method, the element 
J i j  that previously has the value zero will now be 

To retain the original sparse pattern of the Jacobian matrix for Newton's method, we force 
this term to be zero, and the error produced by neglecting the contribution of (25) is 

Generally, this error will decrease as v increases. Therefore unless a close initial guess is available, 
it is better to start the iteration process with one or two Newton's iterations, then to continue 
the iteration by the new method. We found that this approach can generate convergent solutions 
for our test problems satisfactorily. 
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After one or two Newton's iterations, J in (18) is updated as follows: 

where 
Y = F(w"+') - F(w"), 

q = $ + I -  w". 

The evaluation of J using (26) is simple and straightforward and requires much less computational 
effort than using (20). 

Because the values of the stiffness matrix and the right-hand-side vector in the previous iteration 
are used in the updating of the Jacobian matrix as shown in (26), additional space is required 
to store these values. The vector used for storing the values has the length (total number of 
elements) x (number of variables per element ) x (number of variables per element + 1). 

NUMERICAL RESULTS 

We used two grids for our computation. The domain of integration reduces to a unit square 
after non-dimensionalization. Grid 1 which consists of 16 equal square elements is shown in 
Figure 2 and grid 2 consists of 36 equal square elements. There are 81 and 169 nodes in grids 1 and 
2, respectively. 

We selected two cases for comparison. Case I corresponds to a square duct, and case I1 
corresponds to a rectangular duct with S = 0.5. 

All the computations were performed on a CDC Cyber 170 computer with single-precision 
arithmetic. The power-law index n was fixed to be 0.75, the tolerance of convergence was chosen to 

Figure 2. Grid 1 
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Table 1. Numerical results of case I 

? *  
/” - A 

n 
Case Grid 1 Grid 2 NT* BR TI CPU time,s A x  10 7 x 100% 

1-1 X 5 0 5 340.52 0.20994 0.16 
1 - 2  X 2 4 6 159.38 0.20996 0.1 5 
1 -3  x 1 10 11 1 17.90 0.20994 0.15 
1 -4  X 5 0 5 776.1 1 021024 001 5 
1 - 5  X 2 4 6 351.06 0.21023 0.0 19 
1-6 X 1 no convergence after 20 iterations. 

* NT: Newton’s iteration, BR: Broyden’s iteration, TI: total number of iterations, x: value of A in Reference 12. 

Table 11. Numerical results of case I1 
~ 

2 - 1  
2 

Case Grid 1 Grid 2 NT BR TI CPU time,s 1 x 100 - x 100% 

TI - 1 X 5 0 5 351.73 0.74697 0.20 
I1 - 2 X 2 5 7 164.48 0.74089 0.62 
11 - 3 X 6 0 6 926.41 074539 0.016 
I1 -4  X 2 6 8 373.82 0.74634 0.1 1 

be 
its value was less than 

and the initial guess for w was 0.1 for all cases. qTq in (26) was replaced by 1.0 when 

Because the 9 x 9 stiffness matrix J is symmetric, we needed to evaluate only 45 elements of J. 
The values of 2 given by Wheeler and Wissler were used for comparison; they reported that the 

errors for these values are < 0.1 per cent. 
The numerical results for case I are shown in TableI. It is clear that using the nine-node 

Lagrangian isoparametric element can generate numerical solutions of high accuracy, even on 
a relatively coarse grid. Using the new method can save at least 50 per cent of CPU time, although 
starting with only one Newton’s iteration can save more, as expected. 

Table I1 shows the numerical results for case 11. Similarly, the numerical solutions are quite 
accurate, and the new method can also save more than 50 per cent of CPU time. 

We could not obtain convergent solutions after 20 iterations if we started with only one 
Newton’s iteration for case 1-6 and all cases in Table IT. 

DISCUSSION AND CONCLUSION 

The Galerkin finite-element method has become a powerful tool to analyse non-Newtonian fluid 
flow problems, and the nine-node Lagrangian isoparametric element has been identified to be 
superior to several other types of elements for generating numerical solutions of high accuracy. 
However, owing to the complexity of the constitutive equations of the fluid models and the 
nature of the Lagrangian clement, much computing time is needed in the evaluation of the 
Jacobian matrix for Newton’s method. We propose a new method to reduce the computing time, 
which is a modification of Broyden’s method and can be combined with the frontal method to 
efficiently solve the linear system of equations resulting from the application of Newton’s method 
to the discretized finite-element equations. 
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One numerical example has been given to illustrate this new method. Computational results 
show that at least 50 per cent of CPU time can be saved relative to the regular Newton’s method. 
Based on the numerical results, it is advisable to start with two Newton’s iterations, then proceed 
with the new iterative scheme developed here. 

The objective of this paper is to convey the idea that the combination of Broyden’s method 
with the frontal method provides a useful means to save CPU time, and it is easy to implement 
this new approach. The substantial savings of computer time for the test problem are due to 
the fact that the numbers of unknowns are relatively small. As the number of unknowns increases, 
the cost of the LU decomposition starts to dominate the cost of the numerical integrations. 
Typical savings resulting from the bypassing of numerical integrations for large problems, as 
one of the reviewers pointed out, would be around 10 per cent in solution time per iteration. 

If simple triangular elements are used for non-Newtonian fluid flow problems, the new method 
cannot save much computing time because there is no numerical integration involved. Crochet 
and Bezylg reported that using a modified Newton’s method did not save much computing time 
for their finite-element flow study. 

It is our hope that this paper will initiate some numerical experiments for problems with large 
numbers of unknowns. 
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NOTATIONS 

A ,  = integration, equation (14) 

dB = boundary of B 

dD = boundary of D 

B = domain of integration 

D = domain of integration, dimensionless 

e = area of an element 
F = vector, equation (1 6) 
I? = vector, equation (23) 

f ,  = function, equation (12) 
f = function, equation (22) 
h = length of the longer side of a rectangle 
J = Jacobian matrix 

n = power-law index 
p = fluid pressure 
Q = volumetric flow rate 
q = vector, equation (28) 
q = vector appearing in Broyden’s method 
S = aspect ratio 
ti, = axial velocity component 
w = axial velocity component, dimensionless 
w = vector, equation (17) 
9 = unknown vector, equation (23) 

Kmi = integration, equation (13) 
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2, j, 5 = Cartesian co-ordinates 
A = unknown variable, equation (22) 

Y = vector, equation (27) 
9 = vector appearing in Broyden's method 

x, y = lateral Cartesian co-ordinates, dimensionless 

Greek letters 

pmi = function, equation (1 5)  
= apparent viscosity, equation (2) 

y = apparent viscosity, dimensionless, equation (6) 
K = material constant of power-law model 
A =  shape factor, equation (10) 
v = number of iterations 
= interpolation function 
= acceleration parameter in Broyden's method 

Subscripts 
I ,  i, j ,  m = dummy indices 

APPENDIX: UPDATING THE JACOBIAN MATRIX BY BROYDENS 
METHOD IN A DISCRETE MANNER 

Consider the linear system of equations 
= y(n). 

Let A(") be the sum of two submatrices, i.e. 
A@) = A',") + A',) 

and 

where 
y(n)  y'l"' + y','. 

Applying Broyden's method to update the matrices in (29), (31) and (32), we obtain 

where 

(33) 
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Adding (35) and (36), we obtain 

Therefore A(”) can be updated by Broyden’s method in a discrete manner, i.e. each ofits submatrices 
can be updated separately, and A(“+’) is obtained by adding the updated submatrices. 
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